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Many teachers and students use the LinReg function of the Texas Instruments

graphing calculators without ever delving into the   whys of the algorithm. This

document will explain the underlying algebra of the   LinReg function and provide

a graphical demonstration of the appropriateness of the algebraic results compared

with the   LinReg function. I also provide several Cabri II Plus dynamic geometry

files for exploring the principles geometrically.

 Here are some 'data points' stored in the lists L1 and L2:   

Our mission is to determine the   Least Squares Line for this

dataset. This is the algorithm that   Linear Regression (LinReg) implements. The

algorithm finds the line that minimizes the   sum of the squares of the residuals (the

vertical distances from a line to the actual data points), or   SSR. See the Cabri II

Plus file   Least Squares Line which provides a geometric playground to explore

the principle of minimizing this value.

The   Least Squares Line is one of several   best-fit-lines defined by

mathematicians. It is   not the only   best-fit-line. There is not really a proof that this

is the 'best line'. For example, the TI graphing calculators also have a   Med-Med

function on the Stat/Calc menu that produces another   best-fit-line.

Part 1
We first   assume (more about this later) that the least squares line passes through

(xbar, ybar), the   centroid* of the data points. We can find these coordinates by

calculating:

        and      

meanL1  → xbar

23

6

meanL2  → ybar

14

3
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Now we define two functions:

Define the equation of the line through   (xbar, ybar).   This line has   two independent

variables;   m   is   the slope of the line and, of course,   x.   

   

ym, x := m⋅x - xbar  + ybar

"Done"

Define the 'sum of  squared residuals' (SSR) function , the sum of the squares of

the vertical distances between the line defined above and the data points as a

function of its slope:

   

SSEm  := 
dim 


L1



∑∑∑∑
i = 1




2


y

m, L1

i 
 - L2

i 



"Done"

   

Here is the result of simplifying that 'sum of  squared residuals   ' function:

   

SSEm

185⋅
2

m

6
 - 

64⋅m

3
 + 

130

3

Notice that this function is merely quadratic in   m. Our goal is to 'minimize' this

function.   (We could find the minimum of this function by simply writing it in

'vertex form' where the x-coordinate would be   -b/2a, but I don't think there's a

simple way of extracting the values of   a and   b from the quadratic above) The

following math box gives the value for   m that produces the minimum value of

SSR(m) and we store this result in the variable   slope:

                              

rightfMinSSEm , m  → slope

64

185
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Now let's look at our 'Least Squares Line':   

yslope, x

64⋅x

185
 + 

618

185

===========================================================

Since our line above might use fractions, we convert to decimals here to compare

our line to the   LinReg line

    

approxyslope, x

.345945945946⋅x + 3.34054054054

Let's see how our line compares to the   Linear Regression algorithm:

   

Linear Regression (ax+b)

regEQ(x) = .34594594595x + 3.3405405405

Not only does our algebra sometimes produce an equation with fraction (exact)

coefficients, it may show even greater accuracy than the   Linear Regression

function in its decimal form! The graph below shows the data points (purple), the

centroid* (red dot), and the two lines (one from the algebra and one from the

Linear Regression) in blue and yellow:
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Interactivity: Now go back to page 1, open the List Editor containing the data

points, scroll back to here, and activate the List Editor while looking at this page.

Change or add to the values in the two lists and watch the changes in the 'algebraic

line' and the Linear Regression line.
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Part 2:   
Let's assume this time that we know the   slope of the line (the variable   slope from

above) but do not assume that it contains (xbar, ybar)...

   

slope

64

185

...and want to find the   y-intercept of the line instead. Our goal is to demonstrate

that the resulting line will contain the   centroid* of the data set (xbar, ybar).

First, define the line function:

 , which looks like this:   

define yx , b  = slope⋅x  + b

"Done"

yx, b

64⋅x

185
 + b

Second, define a new   sum of squared residuals (SSRb) function using this line:

   

define SSRbb  = 
dim 


l1


∑∑∑∑
i = 1




2


y

L1

i
, b

 - L2

i 



"Done"

Here's the   SSRb(b) function simplified; another quadratic:

    

SSRbb

6⋅
2

b  - 
7416⋅b

185
 + 

3648334

34225

Again, we determine the value for   b that produces the minimum for this function

and store the value in the variable y_int:

                                       

rightfminSSRbb , b  → y_int

618

185

And here is the equation of   this   Least Squares Line:

                                          

yx , y_int

64⋅x

185
 + 

618

185

and here we confirm that (xbar, ybar) is on the line as it was before:

                                      

yxbar, y_int

14

3

ybar

14

3

as it must be,   since it is the same equation!
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Notes:

CENTROID*: The term 'centroid' as used here is not fully accurate. If the points

are assumed to be discrete 'atoms' (as they are in this application), then the average

of the x's and the average of the y's produce a point which   does represent the

'center of mass' property that the   centroid of a triangle has, but if the data points

represent the vertices of a laminar, or 'solid' sheet, like a polygon made out of

cardboard, then the point (xbar, ybar) is not the 'centroid' (center of mass) in the

traditional, triangular sense and should not be called the 'centroid'.

The choice of using (xbar, ybar) as a starting point for the 'Least Squares Line' is

also motivated by Gloria Barrett, who examines the   sum-of-residuals of various

lines. This preliminary exploration leads to the conclusion that   any line that

contains the point (xbar, ybar) produces a   sum-of-residuals value of 0. Hence, it is

appropriate in our quest to find a 'best-fit-line' to first require that our line must

satisfy this condition. Pretty reasonable, eh? See the Cabri file   Least Squares Line

- sum of residuals.   Here is the algebraic demonstration:

    See that the variable m is undefined.

m

m

We define the equation of the line through (xbar, ybar) again:

   

ym, x  := m⋅x - xbar  + ybar

"Done"

and define the sum of residuals (SR) function:

   

define SRx  = 
dim 


L1



∑∑∑∑
i = 1



y

m, L1

i 
 - L2

i 

"Done"

Notice that   (regardless of   m)!

SRx

0

and the line's value at   xbar is   .

ym, xbar

14

3

ybar

14

3
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